NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 1 of 60

1	
2	
3	UNITIL ENERGY SERVICES, INC.
4	
5	
6	
7	
8	
9	
10	
11	DIRECT TESTIMONY
12	
13	OF
14	
15	ROBERT B. HEVERT
16	
17	
18	
19	
20	
21	
22	
23	
24	New Hampshire Public Utilities Commission
25	
26	
27	Docket No. DE 16-384

TABLE OF CONTENTS 1 I. INTRODUCTION 4 2 PURPOSE AND OVERVIEW OF TESTIMONY......5 II. 3 III. 4 REGULATORY GUIDELINES AND FINANCIAL CONSIDERATIONS......10 IV. 5 V. PROXY GROUP SELECTION......11 6 COST OF EQUITY ESTIMATION......15 VI. VII. BUSINESS RISKS AND OTHER CONSIDERATIONS......42 CAPITAL MARKET ENVIRONMENT47 VIII. 9 IX. CAPITAL STRUCTURE55 10 X. 11 CONCLUSIONS AND RECOMMENDATION58 XI. 12 13 14 15 16

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 3 of 60

1		LIST OF EXHIBITS
2		
3	Schedule RBH-1:	Direct Testimony of Robert B. Hevert
4	Schedule RBH-2:	Resume and Testimony Listing of Robert B. Hevert
5	Schedule RBH-3:	Constant Growth DCF Results
6	Schedule RBH-4:	Multi-Stage DCF Results
7	Schedule RBH-5:	Multi-Stage DCF Results with Terminal P/E
8	Schedule RBH-6:	Market Risk Premium Calculations
9	Schedule RBH-7:	Beta Coefficients
10	Schedule RBH-8:	CAPM Results
11	Schedule RBH-9:	Bond Yield Risk Premium Analysis
12	Schedule RBH-10:	Asset Turnover
13	Schedule RBH-11:	Small Size Premium
14	Schedule RBH-12:	Flotation Costs
15	Schedule RBH-13:	Capital Structure
16	Schedule RBH-14:	Cost of Debt

I. INTRODUCTION

- 2 Q. Please state your name, affiliation and business address.
- 3 A. My name is Robert B. Hevert. I am Managing Partner of Sussex Economic Advisors,
- 4 LLC ("Sussex"). My business address is 1900 West Park Drive, Suite 250,
- 5 Westborough, Massachusetts 01581.

6

7

1

- Q. On whose behalf are you submitting this testimony?
- 8 A. I am submitting this testimony before the New Hampshire Public Utilities Commission
- 9 ("Commission") on behalf of Unitil Energy Systems, Inc. ("Unitil Energy" or the
- 10 "Company").

11

12

- Q. Please describe your educational background.
- 13 A. I hold a Bachelor's degree in Business and Economics from the University of Delaware,
- and an MBA with a concentration in Finance from the University of Massachusetts. I
- also hold the Chartered Financial Analyst designation.

16

- Q. Please describe your experience in the energy and utility industries.
- 18 A. I have worked in regulated industries for over twenty-five years, having served as an
- executive and manager with consulting firms, a financial officer of a publicly traded
- 20 natural gas utility (at the time, Bay State Gas Company), and an analyst at a
- 21 telecommunications utility. In my role as a consultant, I have advised numerous energy
- and utility clients on a wide range of financial and economic issues, including corporate
- and asset-based transactions, asset and enterprise valuation, transaction due diligence,

and strategic matters. As an expert witness, I have provided testimony in over 150 proceedings regarding various financial and regulatory matters before numerous state utility regulatory agencies, the Federal Energy Regulatory Commission, and the Province of Alberta, Canada. A summary of my professional and educational background, including a list of my testimony in prior proceedings, is included in Schedule RBH-2.

A.

II. PURPOSE AND OVERVIEW OF TESTIMONY

8 Q. What is the purpose of your testimony?

The purpose of my testimony is to present evidence and provide a recommendation regarding the Company's Cost of Equity (sometimes referred to as the "Return on Equity" or "ROE") and to provide an assessment of the capital structure and cost of debt to be used for ratemaking purposes, as proposed in the testimony of Company Witness David Chong. My analyses and conclusions are supported by the data presented in Schedule RBH-3 through Schedule RBH-14, which have been prepared by me or under my direction.

A.

Q. What are your conclusions regarding the appropriate Cost of Equity and capital structure for the Company?

My analyses indicate that the Company's Cost of Equity currently is in the range of 10.00 percent to 10.60 percent. Based on the quantitative and qualitative analyses discussed throughout my testimony, I conclude that an ROE of 10.30 percent is reasonable and appropriate. That ROE, together with the Company's proposed capital structure and cost of debt, produces an overall Rate of Return of 8.75 percent. As to its proposed capital

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 6 of 60

structure, I conclude that the Company's proposal is consistent with the capital structures that have been in place over several fiscal quarters at comparable operating utility companies. Given the consistency of its proposal with similarly situated utility companies, I conclude that the Company's proposed capital structure is reasonable and appropriate. Regarding the cost of debt, the Company has proposed its actual net cost rate of 7.15 percent, which I believe is reasonable and appropriate.

A.

Q. Please provide a brief overview of the analyses that leads to your ROE

recommendation.

Equity analysts and investors use multiple methods to develop their return requirements for investments. In order to develop my ROE recommendation, I relied on three widely-accepted approaches: The Constant Growth and Multi-Stage forms of the Discounted Cash Flow ("DCF") model, the Capital Asset Pricing Model ("CAPM"); and the Bond Yield Plus Risk Premium approach.

My recommendations and conclusions consider the risks associated with (1) the Company's comparatively small size; and (2) flotation costs associated with equity issuances. Although I did not make any explicit adjustments to my ROE estimates for those factors, I did take them into consideration in determining the range in which the Company's Cost of Equity likely falls.

See, Schedule RevReq 5-4

2	A.	The remainder of my testimony is organized as follows:
3		• <u>Section III</u> – Provides a summary of my conclusions and recommendations;
4		• <u>Section IV</u> – Discusses the regulatory guidelines and financial considerations
5		pertinent to the development of the cost of capital;
6		• <u>Section V</u> – Explains my selection of the proxy group used to develop my
7		analytical results;
8		• <u>Section VI</u> – Explains my analyses and the analytical bases for my ROE
9		recommendation;
10		• <u>Section VII</u> – Provides a discussion of specific business risks that have a direct
11		bearing on the Company's Cost of Equity;
12		• <u>Section VIII</u> – Highlights the current capital market conditions and their effect on
13		the Company's Cost of Equity;
14		• <u>Section IX</u> – Addresses the reasonableness of the Company's proposed capital
15		structure;
16		• <u>Section X</u> – Addresses the reasonableness of the Company's proposed Cost of
17		Debt; and
18		• <u>Section XI</u> – Summarizes my conclusions and recommendations.
19		
20	III.	SUMMARY OF CONCLUSIONS
21	Q.	What are the key factors considered in your analyses and upon which you base your
22		recommended ROE?

How is the remainder of your testimony organized?

Q.

2 A. My analyses and recommendations considered the following:

1

3

4

5

6

7

8

9

10

11

12

- The *Hope* and *Bluefield* decisions² that established the standards for determining a fair and reasonable allowed return on equity including: consistency of the allowed return with other businesses having similar risk; adequacy of the return to provide access to capital and support credit quality; and that the end result must lead to just and reasonable rates.
 - The Company's business risks relative to the proxy group of comparable companies and the implications of those risks in arriving at the appropriate ROE.
 - The effect of the current capital market conditions on investors' return requirements.

13 Q. What are the results of your analyses?

14 A. The results of my analyses are summarized in Table 1.

Bluefield Waterworks & Improvement Co. v. Public Service Comm'n of West Virginia, 262 U.S. 679 (1923); Federal Power Comm'n v. Hope Natural Gas Co., 320 U.S. 591 (1944).

Table 1: Summary of Analytical Results

Discounted Cash Flow	Mean Low	Mean	Mean High
30-Day Constant Growth DCF 8.47%		9.13%	9.78%
90-Day Constant Growth DCF	8.60%	9.27%	9.91%
180-Day Constant Growth DCF	8.70%	9.37%	10.01%
30-Day Multi-Stage DCF	9.39%	9.86%	10.32%
90-Day Multi-Stage DCF	9.72%	10.20%	10.66%
180-Day Multi-Stage DCF	9.99%	10.46%	10.93%
Suppo	rting Methodol	logies	
CAPM Results	Bloomberg Derived Market Risk Premium	Value Line Derived Market Risk Premium	
	loomberg Beta C		
Current 30-Year Treasury (2.68%)	9.02%	8.46%	
Near Term Projected 30-Year Trea	asury (3.35%)	9.69%	9.13%
Average Vo	alue Line Beta C	Coefficient	
Current 30-Year Treasury (2.68%)		10.95%	10.22%
Near Term Projected 30-Year Trea	asury (3.35%)	11.62%	10.89%
	Low	Mid	High
Bond Yield Risk Premium	10.04%	10.08%	10.47%
Flotation Costs 0.13%			

3

4

5

6

1

Based on the analytical results presented in Table 1, and in light of the considerations discussed throughout the balance of my testimony regarding the Company's business and regulatory risks relative to the proxy group, it is my view that an ROE of 10.30 percent is reasonable and appropriate.

1 IV. REGULATORY GUIDELINES AND FINANCIAL CONSIDERATIONS

- Q. Please provide a brief summary of the guidelines established by the United States

 Supreme Court (the "Court") for the purpose of determining a utility's ROE.
- A. The Court established the guiding principles for establishing a fair return for capital in two cases: (1) *Bluefield Water Works and Improvement Co. v. Public Service Comm'n of West Virginia* ("*Bluefield*"); and (2) *Federal Power Comm'n v. Hope Natural Gas Co.*("*Hope*").³ In those cases, the Court recognized that the fair rate of return on equity should be (1) comparable to returns investors expect to earn on other investments of similar risk, (2) sufficient to assure confidence in the company's financial integrity, and (3) adequate to maintain and support the company's credit and to attract capital.

11

12

Q. Does New Hampshire precedent provide similar guidance?

- 13 A. Yes. The Commission's decision in Order No. 24,972 indicates that the Commission
 14 adheres to the capital attraction standard articulated in the *Hope* and *Bluefield* decisions.⁴
 15 That Order also states that the Commission is:
 - [B]ound to set a rate of return that falls within a zone of reasonableness, neither so low to result in a confiscation of company property, nor so high as to result in extortionate charges to customers. A rate falling within the zone should, at a minimum, be sufficient to yield the cost of debt and equity capital necessary to provide the assets required for the discharge of the company's responsibility.⁵

21 22

23

16

17

18

19

20

Based on those standards, the authorized ROE should provide the Company with the

Bluefield Waterworks & Improvement Co., v. Public Service Commission of West Virginia, 262 U.S. 679 (1923); Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944).

See, Unitil Natural Gas, Inc. d/b/a National Grid NH, Docket DG 08-009, Order No. 24,972 at 54-55 (May 29 2009)

⁵ *Ibid.*, at 54. *See also*, *Appeal of Conservation Law Foundation*, 127 N.H. 606, 635 (1986).

1 opportunity to earn a fair and reasonable return, and should enable efficient access to external capital under a variety of market conditions. 2 3 V. PROXY GROUP SELECTION 4 5 Q. As a preliminary matter, why is it necessary to select a group of proxy companies to determine the Cost of Equity for Unitil Energy? 6 A. Since the ROE is a market-based concept, and Unitil Energy is not a publicly traded entity, it is necessary to establish a group of comparable publicly traded companies to 8 serve as its "proxy." Even if Unitil Energy were a publicly traded entity, short-term 9 events could bias its market value during a given period of time. A significant benefit of 10 using a proxy group is that it serves to moderate the effects of anomalous, temporary 11 events associated with any one company. 12 13 Q. Does the selection of a proxy group suggest that analytical results will be tightly 14 15 clustered around average (i.e., mean) results? No. The DCF approach, for example, defines the Cost of Equity as the sum of the 16 A. expected dividend yield and projected long-term growth. Despite the care taken to ensure 17 risk comparability, market expectations with respect to future risks and growth 18 opportunities will vary from company to company. Therefore, even within a group of 19 20 similarly situated companies, it is common for analytical results to reflect a seemingly wide range. At issue, then, is how to estimate the Cost of Equity from within that range. 21 That determination necessarily must consider a wide range of both empirical and 22

23

qualitative information.

1		
2	Q.	Please provide a summary profile of Unitil Energy.
3	A.	Unitil Energy provides electric distribution service to approximately 77,000 customers in
4		the southeastern seacoast and state capital regions of New Hampshire. ⁶
5		
6	Q.	How did you select the companies included in your proxy group?
7	A.	I began with the universe of companies that Value Line classifies as Electric Utilities, and
8		applied the following screening criteria.
9		• I excluded companies that do not consistently pay quarterly cash dividends;
10		• I excluded companies that were not covered by at least two utility industry
11		equity analysts;
12		• I excluded companies that do not have investment grade senior unsecured
13		bond and/or corporate credit ratings from S&P
14		• I excluded companies with less than 60.00 percent of total net operating
15		income derived from regulated utility operations over the three most recently
16		reported fiscal years;
17		• I excluded companies whose regulated electric operating income over the
18		three most recently reported fiscal years represented less than 60.00 percent of
19		total regulated operating income; ⁷

⁶ Source: SNL Financial.

In prior cases before the Commission, I excluded companies whose regulated electric operating income over the three most recently reported fiscal years represented less than 90.00 percent of total regulated operating income. Due to recent consolidation in the industry, that threshold would produce a relative small group of proxy companies. As such, in this proceeding I have lowered the threshold to 60.00 percent.

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 13 of 60

1		• I eliminated companies that are currently known to be party to a merger or
2		other significant transaction.
3		
4	Q.	Based on those criteria, what is the composition of your proxy group?
5	A.	The criteria discussed above results in a proxy group of the following 22 companies
6		provided in Table 2 below.
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		

Table 2: Proxy Group

Company	Ticker
ALLETE, Inc.	ALE
Alliant Energy Corporation	LNT
Ameren Corporation	AEE
American Electric Power Company, Inc.	AEP
Avista Corporation	AVA
CenterPoint Energy, Inc.	CNP
CMS Energy Corporation	CMS
Consolidated Edison, Inc.	ED
DTE Energy Company	DTE
Eversource Energy	ES
FirstEnergy Corp.	FE
Great Plains Energy Inc.	GXP
IDACORP, Inc.	IDA
NorthWestern Corporation	NWE
OGE Energy Corp.	OGE
Otter Tail Corporation	OTTR
Pinnacle West Capital Corporation	PNW
PNM Resources, Inc.	PNM
Portland General Electric Company	POR
SCANA Corporation	SCG
Westar Energy, Inc. ⁸	WR
Xcel Energy Inc.	XEL

On March 10, 2016, Bloomberg.com reported that Westar Energy ("WR") was exploring strategic options, including a possible sale. Because my analyses pre-date that announcement, I have included WR in my proxy group. To the extent I provide updated analyses later in this proceeding, I may exclude WR from the proxy group at that time.

2

VI. COST OF EQUITY ESTIMATION

- 3 Q. Please briefly discuss the ROE in the context of the regulated rate of return.
- A. Regulated utilities primarily use common stock and long-term debt to finance their
 capital investments. The overall rate of return ("ROR") weighs the costs of the
 individual sources of capital by their respective book values. While the cost of debt and
- cost of preferred stock can be directly observed, the Cost of Equity is market-based and,
- therefore, must be estimated based on observable market information.

9

10

11

12

13

14

15

16

17

Q. How is the required ROE determined?

A. Because the Cost of Equity is not directly observable it must be estimated based on both quantitative and qualitative information. Although a number of empirical models have been developed for that purpose, all are subject to limiting assumptions or other constraints. Consequently, many finance texts recommend using multiple approaches to estimate the Cost of Equity. When faced with the task of estimating the Cost of Equity, analysts and investors are inclined to gather and evaluate as much relevant data as reasonably can be analyzed and, therefore, rely on multiple analytical approaches.

18

19

20

As a practical matter, no individual model is more reliable than all others under all market conditions. Therefore, it is both prudent and appropriate to use multiple

⁻

See, e.g., Eugene Brigham, Louis Gapenski, <u>Financial Management: Theory and Practice</u>, 7th Ed., 1994, at 341, and Tom Copeland, Tim Koller and Jack Murrin, <u>Valuation: Measuring and Managing the Value of Companies</u>, 3rd ed., 2000, at 214.

1		methodologies in order to mitigate the effects of assumptions and inputs associated with
2		any single approach. As such, I have considered the results of the Constant Growth and
3		Multi-Stage forms of the DCF model, the Capital Asset Pricing Model, and the Bond
4		Yield Plus Risk Premium approach.
5	Q.	Are you aware that the New Hampshire Commission has relied primarily on the
6		DCF approach in establishing the ROE for regulated utilities?
7	A.	Yes, I am aware that the Commission has expressed its preference for the Constant
8		Growth DCF approach as the primary method in determining the ROE. However, the
9		Commission also has encouraged the use of other methods as a test of the reasonableness
10		of the DCF results. In prior proceedings, for example, both Staff and the Commission
11		supported the use of a three-stage DCF model. As the Commission noted:
12 13 14 15 16 17		Staff testimony supports the view that a three-stage version of the DCF represents a valuable refinement to the DCF model of estimating the cost of capital looking forward over the long term. We agree. Given the computing power available to analysts today, it is possible to more closely match growth rate estimates to varying growth expectations over longer time horizons. ¹⁰
18		As such, I have relied on two forms of the DCF model (the Constant Growth and Multi-
19		Stage forms) as my principal approaches, and the CAPM and Risk Premium models to
20		assess my DCF results.
21		
22		Constant Growth DCF Model
23	Q.	Are DCF models widely used in regulatory proceedings?
24	A.	Yes. In my experience, the Constant Growth DCF model is widely recognized in

Re: Verizon New Hampshire, 232 P.U.R. 4th 24 (N.H. P.UC., 2004).

regulatory proceedings, as well as in financial literature. Nonetheless, neither the DCF
nor any other model should be applied without considerable judgment in the selection of
data and the interpretation of results.

4

5

10

11

12

13

14

15

16

17

Q. Please describe the DCF approach.

A. The Constant Growth DCF approach is based on the theory that a stock's current price represents the present value of all expected future cash flows. In its simplest form, the Constant Growth DCF model expresses the Cost of Equity as the discount rate that sets the current price equal to expected cash flows:

$$P_0 = \frac{D_1}{(1+k)} + \frac{D_2}{(1+k)^2} + \dots + \frac{D_{\infty}}{(1+k)^{\infty}}$$
 Equation [1]

where P represents the current stock price, $D_1 \dots D_{\infty}$ represent expected future dividends, and k is the discount rate, or required ROE. Equation [1] is a standard present value calculation that can be simplified and rearranged into the familiar form:

$$k = \frac{D(1+g)}{P_0} + g$$
 Equation [2]

Equation [2] often is referred to as the "Constant Growth DCF" model, in which the first term is the expected dividend yield and the second term is the expected long-term annual growth rate.

18

19

Q. What assumptions are required for the Constant Growth DCF model?

A. The Constant Growth DCF model assumes: (1) a constant average annual growth rate for earnings and dividends; (2) a stable dividend payout ratio; (3) a constant price-to-

2		Under those assumptions, dividends, earnings, book value, and the stock price all grow at
3		the same, constant rate. The model further assumes that the current Cost of Equity (that
4		is, the model's results) will remain unchanged, in perpetuity.
5		
6	Q.	What market data did you use to calculate the dividend yield component of your
7		DCF model?
8	A.	The dividend yield is based on the proxy companies' current annualized dividend, and
9		average closing stock prices over the 30-, 90-, and 180-trading day periods as of February
10		29, 2016.
11		
12	Q.	Why did you use three averaging periods to calculate an average stock price?
13	A.	I did so to ensure that the model's results are not skewed by anomalous events that may
14		affect stock prices on any given trading day. At the same time, the averaging period
15		should be reasonably representative of expected capital market conditions over the long
16		term. In my view, using 30-, 90-, and 180-day averaging periods reasonably balances
17		those concerns.
18		
19	Q.	Did you make any adjustments to the dividend yield to account for periodic growth
20		in dividends?
21	A.	Yes. Because utilities increase their quarterly dividends at different times throughout the
22		year, it is reasonable to assume that dividend increases will be evenly distributed over
23		calendar quarters. Given that assumption, it is appropriate to calculate the expected

earnings ("P/E") multiple, and; (4) a discount rate greater than the expected growth rate.

dividend yield by applying one-half of the long-term growth rate to the current dividend yield. *See*, Schedule RBH-3. That adjustment ensures that the expected dividend yield is representative of the coming twelve-month period, and does not overstate the dividends to be paid during that time.

A.

Q. Is it important to select appropriate measures of long-term growth in applying the DCF model?

Yes. In its Constant Growth form, the DCF model (*i.e.*, as presented in Equation [2] above) assumes a single growth estimate in perpetuity. Accordingly, in order to reduce the long-term growth rate to a single measure, one must assume a fixed payout ratio, and the same constant growth rate for earnings per share ("EPS"), dividends per share, and book value per share. Since dividend growth can only be sustained by earnings growth, the model should incorporate a variety of measures of long-term earnings growth. That can be accomplished by averaging those measures of long-term growth that tend to be least influenced by capital allocation decisions that companies may make in response to near-term changes in the business environment. Since such decisions may directly affect near-term dividend payout ratios, estimates of earnings growth are more indicative of long-term investor expectations than are dividend growth estimates. Therefore, for the purposes of the Constant Growth DCF model, growth in EPS represents the appropriate measure of long-term growth.

- Q. Please summarize the findings of academic research on the appropriate measure for estimating equity returns using the DCF model.
- A. The relationship between various growth rates and stock valuation metrics has been the subject of much academic research. As noted over 40 years ago by Charles Phillips in The Economics of Regulation:

7

8

9

10

11

12

13

14

15

16

17

18

19

For many years, it was thought that investors bought utility stocks largely on the basis of dividends. More recently, however, studies indicate that the market is valuing utility stocks with reference to total per share earnings, so that the earnings-price ratio has assumed increased emphasis in rate cases. 12

Phillips' conclusion continues to hold true. Subsequent academic research clearly and consistently has indicated that measures of earnings and cash flow are strongly related to returns, and that analysts' forecasts of growth are superior to other measures of growth in predicting stock prices. For example, Vander Weide and Carleton state that "[our] results ... are consistent with the hypothesis that investors use analysts' forecasts, rather than historically oriented growth calculations, in making stock buy-and-sell decisions."

Other research specifically notes the importance of analysts' growth estimates in determining the Cost of Equity, and in the valuation of equity securities. Dr. Robert Harris noted that "a growing body of knowledge shows that analysts' earnings forecasts

See Harris, Robert, Using Analysts' Growth Forecasts to Estimate Shareholder Required Rate of Return, Financial Management (Spring 1986).

Charles F. Phillips, Jr., The Economics of Regulation, at 285 (Rev. ed. 1969).

See, e.g., Christofi, Christofi, Lori and Moliver, Evaluating Common Stocks Using Value Line's Projected Cash Flows and Implied Growth Rate, Journal of Investing (Spring 1999); Harris and Marston, Estimating Shareholder Risk Premia Using Analysts' Growth Forecasts, Financial Management, 21 (Summer 1992); and Vander Weide and Carleton, Investor Growth Expectations: Analysts vs. History, The Journal of Portfolio Management (Spring 1988).

Vander Weide and Carleton, *Investor Growth Expectations: Analysts vs. History*, The Journal of Portfolio Management (Spring 1988). The Vander Weide and Carleton study was updated in 2004 under the direction of Dr. Vander Weide. The results of the updated study were consistent with the original study's conclusions.

are indeed reflected in stock prices." Citing Cragg and Malkiel, Dr. Harris notes that those authors "found that the evaluations of companies that analysts make are the sorts of ones on which market valuation is based." Similarly, Brigham, Shome, and Vinson noted that "evidence in the current literature indicates that (i) analysts' forecasts are superior to forecasts based solely on time series data, and (ii) investors do rely on analysts' forecasts."16 To that point, the research of Carleton and Vander Weide demonstrates that earnings growth projections have a statistically significant relationship to stock valuation levels, while dividend growth rates do not.¹⁷ Those findings suggest that investors form their investment decisions based on expectations of growth in earnings, not dividends. Consequently, earnings growth, not dividend growth, is the appropriate estimate for the purpose of the Constant Growth DCF model. Q. Are you aware that the Commission has indicated that it favors use of growth forecasts aside from expected earnings per share growth? Yes, I am aware that the Commission has accepted the use of different estimates of A. growth, including dividends per share, and book value per share. In support of that

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

approach, the Commission observed that stock price appreciation is not the sole

Robert S. Harris, *Using Analysts' Growth Forecasts to Estimate Shareholder Required Rate of Return*, Financial Management (Spring 1986).

Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson, *The Risk Premium Approach to Measuring a Utility's Cost of Equity*, Financial Management (Spring 1985).

See Vander Weide and Carleton, Investor Growth Expectations: Analysts vs. History, The Journal of Portfolio Management (Spring 1988).

determinant of investors' returns, and that dividends represent an important element of the return from utility stocks. The Commission further stated that sole reliance on earnings growth is not appropriate since the Constant Growth DCF model assumes a constant P/E ratio. ¹⁸

A.

Q. Why have you not relied on projected dividend growth and book value growth rates in your Constant Growth DCF analysis?

I disagree with the use of dividend and book value growth rates for several reasons. First, earnings are the fundamental determinant of a company's ability to pay dividends.

Management decisions to conserve cash for capital investments, to manage the dividend payout to minimizing future dividend reductions, or to finance future earnings prospects can influence dividend growth rates in near-term periods. Since dividends are discretionary, in the short run, dividend growth may deviate significantly from earnings growth. Over the long run, however, dividends are dependent on earnings.

Similarly, the book value of equity can increase only through increases to retained earnings, or through the issuance of new equity. Both of those factors are derived from earnings: retained earnings increase with the amount of earnings not distributed as dividends; and the price at which new equity is issued is a function of the earnings per share and the then-current P/E ratio. In addition, academic research has clearly indicated that measures of earnings and cash flow are strongly related to returns.

-

Energy North Natural Gas, Inc. d/b/a National Grid NH, Docket DG 08-009, Order No. 24,972 at 63 (May 29, 2009).

Lastly, whereas Zack's and First Call are consensus growth estimates, Value Line is the sole provider of dividend and book value growth estimates. Putting aside the observation that if investor services such as Zack's and First Call felt that projected dividend and book value growth rates were important to investors, they likely would provide them, the fact that Value Line growth rates are developed by a single analyst introduces a potential element of bias. It is for that reason that my screening criteria require each proxy company to be followed by multiple analysts.

A.

Q. Do you have any other comments regarding the use of dividend or book value growth rates in the Constant Growth DCF model?

Yes. As noted earlier, the Constant Growth DCF model assumes that earnings, dividends and book value all grow at the same constant rate, and that the P/E ratio remains constant in perpetuity. Under those strict assumptions, the DCF result does not vary if the stock is held in perpetuity, or if it is held for only two, five, or ten years, or any other period and sold at the market price at the end of that period. As a practical matter, those assumptions rarely, if ever, hold. Because investors are not likely to hold stock in perpetuity, they expect a substantial portion of the return in the form of capital appreciation. Since stock valuation levels are statistically related to earnings growth (but not dividend or book value growth) earnings growth is the appropriate growth rate to use in the DCF analysis.

Q. Please summarize your inputs to the Constant Growth DCF model. 1 I used the following inputs for the price and dividend terms: 2 Α. 1. The average daily closing prices for the 30-, 90-, and 180-trading days 3 ended February 29, 2016, for the term P₀; and 4 2. The annualized dividend per share as of February 29, 2016, for the term 5 D_0 . 6 I then calculated my DCF results using each of the following growth terms: 1. The Zack's consensus long-term earnings growth estimates; 8 2. The First Call consensus long-term earnings growth estimates; 9 3. The Value Line long-term earnings growth estimates; and 10 11 Q. How did you calculate the high and low DCF results? 12 13 A. I calculated the proxy group mean high DCF results by using the maximum EPS growth 14 rate estimate as reported by Value Line, Zack's, and First Call for each proxy company in 15 combination with the dividend yield for each of the proxy group companies. The proxy group mean high results then reflect the average of the maximum DCF results for the 16 proxy group as a whole. I used a similar approach to calculate the proxy group mean low 17 results using instead the minimum of the Value Line, Zack's, and First Call estimate for 18 19 each proxy company. 20 Multi-Stage DCF Model 21 What other forms of the DCF model have you considered? Q. 22

In order to address some of the limiting assumptions underlying the Constant Growth

23

A.

form of the DCF model, I also considered the results of a Multi-Stage (three-stage) DCF Model. The Multi-Stage model, which is an extension of the Constant Growth form, enables the analyst to specify growth rates over three discreet stages. As with the Constant Growth form of the DCF model, the Multi-Stage form defines the Cost of Equity as the discount rate that sets the current price equal to the discounted value of future cash flows. Unlike the Constant Growth form, however, the Multi-Stage model must be solved in an iterative fashion.

Q. Are you aware Staff recommended discarding the Multi-Stage DCF method in Docket No. DE 13-063?

A. Yes, I am. In Docket No. DE 13-063, Staff argued that Granite State Electric "was a well-established electric distribution company", characterized the company as "in the maturity stage of its life cycle", and therefore argued the constant growth DCF model was most appropriate.¹⁹

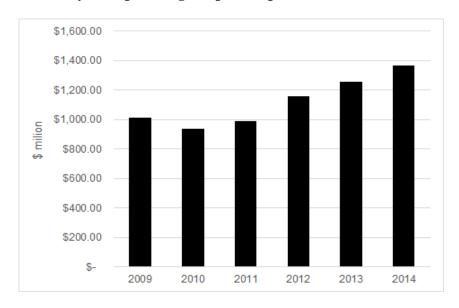
Investors' expectations of growth rates, however, may not remain constant over time, even for well-established companies. The Multi-Stage DCF model therefore allows for changes in expected growth rates. Moreover, the relationships among revenue, assets, and operating income may change over time, resulting in uneven earnings growth rates. To that point, and as noted in Table 3 (below), the ratio of revenue to net plant (*i.e.*, "Asset Turnover") for electric utilities fell from 2009 through 2014; that decline was

See, DE 13-063 *Unitil Electric Company d/b/a Liberty Utilities* Rate Case, Testimony of Leszek Stachow, at 15.

coincident with increases in capital spending during that period (see Chart 1).

Table 3: Asset Turnover for the Value Line Electric Universe²⁰

Year	Average Revenue/ Net Plant
2009	53.35%
2010	52.17%
2011	49.54%
2012	43.84%
2013	43.95%
2014	42.78%


3 4 5

6 7

1

2

Chart 1: Proxy Group Average Capital Expenditures 2009 – 2014²¹

8

9

10

Those findings are consistent with observations made by Regulatory Research Associates ("RRA"), which noted that:

11 12 ...the shake-up in capital markets in late-2008 and an extended period of recessionary pressures took a toll on spending in 2009 and 2010. With

Source: Value Line. *See*, Schedule RBH-10.

Source: Value Line.

financial measures more stable, many companies felt compelled to return to a more aggressive spending posture during 2011, as work was initiated on many new and/or postponed projects.²²

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A.

Looking forward, RRA notes that electric utility capital expenditures are expected to somewhat decline in 2016 and 2017.²³ The Multi-Stage DCF model provides the flexibility to reflect the prospect of changes in payout ratios in connection with changes in capital investments, and to capture differences in future growth rates owing to current investments.

Lastly, I note that in DT 02-110 (Order No. 24,265), both the Commission and Staff noted the beneficial aspects of the Multi-Stage DCF model. Similarly, in Order No 24,552 the Commission noted that in a prior order (Order No. 24,473) it "reaffirmed the use of the Three Stage DCF model..."²⁴

Q. Please now summarize why you have included the Multi-Stage DCF method in your Cost of Equity estimation.

First, it is both prudent and appropriate to use multiple methodologies in order to mitigate the effects of assumptions and inputs associated with any single approach. Second, the Constant Growth DCF model assumes that earnings, dividends and book value will grow at the same, constant rate in perpetuity; that the payout ratio will remain constant in perpetuity; and that the Price/Earnings ratio will remain constant. In addition, the model assumes that the return required today will be the same return required every year in the future. As discussed above, those assumptions are not likely to hold. In particular, it is

Public Service Company of New Hampshire, DE 04-177, Order No. 24,552 (December 2005), at 13.

SNL Energy, Financial Focus Special Report, Capital Expenditure Update, November 1, 2011, at 1.

See SNL Energy, Financial Focus Special Report, Capital Expenditure Update, November 5, 2015, at 1.

likely that over time, payout ratios will increase from their current levels. In addition, to the extent that long-term interest rates increase over the next few years as the Federal Reserve continues its process of policy "normalization", it is likely that the Cost of Equity also will increase. In my view, the Multi-Stage DCF model enables analysts to consider those issues, and to address the limiting, but likely unrealistic assumptions underlying the Constant Growth form of the model.

A.

Q. Please describe the structure of your Multi-Stage DCF model.

As noted above, the Multi-Stage DCF model sets the subject company's stock price equal to the present value of future cash flows received over three "stages." In the first two stages, "cash flows" are defined as projected dividends. In the third stage, "cash flows" equal both dividends and the expected price at which the stock will be sold at the end of the period (*i.e.*, the "terminal price"). The terminal price is calculated based on the Gordon model, which defines the price as the expected dividend divided by the difference between the Cost of Equity (*i.e.*, the discount rate) and the long-term expected growth rate. In essence, the terminal price is defined by the present value of the remaining "cash flows" in perpetuity. In each of the three stages, the dividend is the product of the projected earnings per share and the expected dividend payout ratio. A summary description of the model is provided in Table 4 (below).

Table 4: Multi-Stage DCF Structure

	Stage			
Component	0	First	Second	Terminal
Cash Flow	Initial Stock Price	Expected Dividend	Expected Dividend	Expected Dividend + Terminal Value
Inputs	• Stock Price • Earnings Per Share ("EPS") • Dividends Per Share ("DPS")	•Expected EPS •Expected DPS	•Expected EPS •Expected DPS	•Expected EPS •Expected DPS •Terminal Value
Assumptions	• 30-, 90-, and 180-day average stock price	EPS Growth RatePayout Ratio	 Growth Rate Change Payout Ratio Change	 Long-term Growth Rate Long-term Payout Ratio

3

5

6

7

8

9

10

11

12

A.

1

Q. What are the analytical benefits of your three-stage model?

The principal benefits relate to the flexibility provided by the model's formulation. Since the model provides the ability to specify near, intermediate, and long-term growth rates, for example, it avoids the sometimes-limiting assumption that the subject company will grow at the same, constant rate in perpetuity. In addition, by calculating the dividend as the product of earnings and the payout ratio, the model accommodates assumptions regarding the timing and extent of changes in the payout ratio to reflect, for example, increases or decreases in expected capital spending, or transition from current payout levels to long-term expected levels. In that regard, because the model relies on multiple sources of earnings growth rate assumptions, it is not limited to a single source, such as

Value Line, for all inputs, and therefore mitigates the potential bias associated with 1 relying on a single source of growth estimates.²⁵ 2 3 The model also enables the analyst to assess the reasonableness of the inputs and results 4 by reference to certain market-based metrics. For example, the stock price estimate can 5 be divided by the expected earnings per share in the final year to calculate the terminal 6 7 P/E ratio. Similarly, the terminal P/E ratio can be divided by the terminal growth rate to develop a Price to Earnings Growth ("PEG") ratio. To the extent that the projected P/E 8 or PEG ratios are inconsistent with either historical or expected levels, it may indicate 9 incorrect or inconsistent assumptions within the balance of the model. 10 11 Q. Please summarize your inputs to the Multi-Stage DCF model. 12 13 A. I applied the Multi-Stage model to the proxy group described earlier in my testimony. 14 My assumptions with respect to the various model inputs are described in Table 5 15 (below).

See, for example, Harris and Marston, Estimating Shareholder Risk Premia Using Analysts' Growth Forecasts, Financial Management, 21 (Summer 1992).

Table 5: Multi-Stage DCF Model Assumptions

	Stage			
Component	Initial	First	Transition	Terminal
Stock Price	30-, 90-, and			
	180-day			
	average stock			
	price as of			
	February 29,			
Faminas	2016 2014 actual	EDC ananath as	Transition to	I and taken
Earnings Growth	EPS escalated	EPS growth as		Long-term
Growin		average of (1) Value Line; (2)	Long-term GDP growth	GDP growth
	by Period 1 growth rate	Zack's; (3)	GDP growth	
	growth rate	First Call; and		
		(4) Retention		
		Growth rates		
Payout Ratio		Value Line	Transition to	Long-term
		company-	long-term	industry
		specific	industry	average
			payout ratio	
Terminal				Expected
Value				dividend in
				final year
				divided by
				solved Cost of
				Equity less
				long-term
				growth rate

3

1

Q. How did you calculate the long-term Gross Domestic Product ("GDP") growth rate?

A. The long-term growth rate of 5.30 percent is based on the real GDP growth rate of 3.24

percent from 1929 through 2015, and an inflation rate of 2.00 percent. The GDP growth

rate is calculated as the compound growth rate in the chain-weighted GDP for the period

from 1929 through 2015.²⁶ The rate of inflation of 2.00 percent is an average of two

See Bureau of Economic Analysis, "Current-Dollar and 'Real' Gross Domestic Product," February 26, 2016 update.

components: (1) the compound annual forward rate starting in ten years (*i.e.*, 2026, which is the beginning of the terminal period) based on the 180-day average spread between yields on long-term nominal Treasury Securities and long-term Treasury Inflation

Protected Securities, known as the "TIPS spread" of 1.81 percent;²⁷ and (2) and the projected Blue Chip Financial Forecast of the CPI for 2022 – 2026 of 2.20 percent.²⁸

In essence, the real GDP growth rate projection is based on the assumption that absent specific knowledge to the contrary, it is reasonable to assume that over time, real GDP growth will revert to its long-term mean. In addition, since estimating the Cost of Equity is a market-based exercise, it is important to reflect the sentiments and expectations of investors to the extent possible. In that important respect, the TIPS spread represents the collective views of investors regarding long-term inflation expectations. Equally important, by using forward yields, we are able to infer the level of long-term inflation expected by investors as of the terminal period of the Multi-Stage model (that is, ten years in the future).

Q. What were your specific assumptions with respect to the payout ratio?

A. As noted in Table 5, the first two periods rely on the first year and long-term projected payout ratios reported by Value Line for each of the proxy group companies.²⁹ Then by the end of the second period (*i.e.*, the end of year 10), it is assumed that the payout ratio

See Board of Governors of the Federal Reserve System, "Table H.15 Selected Interest Rates."

Blue Chip Financial Forecasts, December 1, 2015, at 14.

As reported in the Value Line Investment Survey as "All Div'ds to Net Prof."

will converge to the long-term industry average of 67.30 percent.³⁰

2

3

1

Q. What was your principal assumption regarding the terminal value?

A. Although I performed a series of analyses in which the terminal value is calculated based on the assumed long-term nominal GDP growth rate,³¹ I also performed a series of analyses in which the terminal value is based on the current P/E ratio.³² The results of those analyses are shown in Table 6, below. For the reasons discussed below, I believe that assumption is reasonable, and produces reliable results.

Table 6: Multi-Stage DCF Model Results³³

	Mean Low	Mean	Mean High
30-Day Average	9.39%	9.86%	10.32%
90-Day Average	9.72%	10.20%	10.66%
180-Day Average	9.99%	10.46%	10.93%

10

11

12

9

Q. Why are the results presented in Table 6 reliable estimates of the Company's Cost of Equity?

A. As noted earlier, we can use aspects of the Multi-Stage DCF model to assess its

consistency with other market measures, including the terminal P/E ratio. On a relative

basis, the proxy group current P/E ratio of 18.56 is approximately equal to the 2015

market average P/E ratio of 18.37.³⁴ Over time, however, the proxy group traded at

discount to the market of approximately 9.00 percent. It is reasonable assume that in the

Source: Bloomberg Professional

See, Schedule RBH RBH-4.
Defined as the 30-day average of the proxy group P/E ratio, calculated as an Index.

³³ See. Schedule RBH RBH-5.

Source: Bloomberg Professional.

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 34 of 60

future, the group likewise would trade at a discount to the market. Assuming that in the terminal year (that is, 2030) the 18.56 proxy group P/E ratio represents a 9.00 percent discount to the market P/E, the market would then trade at a P/E multiple of approximately 20.40.

That multiple (*i.e.*, 20.40), is less than one standard deviation from the long-term average market P/E ratio. Moreover, over time the market P/E ratio has expanded at a geometric average rate of approximately 0.58 percent per year (that is, about 58 basis points from 1954 through 2015).³⁵ If the market P/E ratio in 2030 is 20.40, the implied rate of expansion is 0.64 percent (that is, 64 basis points), only six basis points from the long-term average. On a relative valuation basis, therefore, the assumed terminal P/E ratio is reasonable, and the model results based on that assumption likewise are reasonable.

Looking to the 5.30 percent terminal growth rate discussed above, the implied terminal P/E ratios are in the range of 15.80 to 18.30 (*see* Schedule RBH-4). Assuming any rate of expansion in the market P/E over the coming fifteen years, those P/E ratios indicate a larger discount than historically has been observed. As such, they may produce results that understate investors' return requirements. On balance, and in the context of current market conditions, it is my view that the assumed terminal P/E ratio of 18.56 produces somewhat more reliable results than does the assumed terminal growth rate method.

Source: Bloomberg Professional.

2

Q. What are the results of your DCF analysis?

- 3 A. My Constant Growth and Multi-Stage DCF results are summarized in Table 7, below (see
- 4 also Schedule RBH-3 and Schedule RBH-5).

5 **Table 7: DCF Results**

Constant Growth DCF	Low	Mean	High
30-Day Average	8.47%	9.13%	9.78%
90-Day Average	8.60%	9.27%	9.91%
180-Day Average	8.70%	9.37%	10.01%
Multi-Stage DCF (Terminal P/E)	Low	Mean	High
30-Day Average	9.39%	9.86%	10.32%
90-Day Average	9.72%	10.20%	10.66%
180-Day Average	9.99%	10.46%	10.93%

6

7 Q. Did you undertake any additional analyses to support your ROE recommendation?

8 A. Yes. As noted earlier, I also applied the CAPM and Risk Premium analyses in estimating
9 the Company's Cost of Equity.

10

11

CAPM Analysis

- 12 Q. Please briefly describe the general form of the CAPM analysis.
- A. The CAPM analysis is a risk premium approach that estimates the Cost of Equity for a
 given security as a function of a risk-free return plus a risk premium (to compensate
 investors for the non-diversifiable or "systematic" risk of that security). As shown in
 Equation [3], the CAPM is defined by four components, each of which theoretically must
 be a forward-looking estimate:

 $K_e = r_f + \beta(r_m - r_f) \qquad \text{Equation [3]}$

where:

 K_e = the required market ROE for a security;

 β = the Beta coefficient of that security;

 r_f = the risk-free rate of return; and

 r_m = the required return on the market as a whole.

7

8

9

10

11

12

3

4

5

6

In Equation [3], the term $(r_m - r_f)$ represents the Market Risk Premium.³⁶ According to the theory underlying the CAPM, since unsystematic risk can be diversified away by adding securities to their investment portfolio, investors should be concerned only with systematic or non-diversifiable risk. Non-diversifiable risk is measured by the Beta coefficient, which is defined as:

$$\beta_j = \frac{\sigma_j}{\sigma_m} x \, \rho_{j,m} \qquad \text{Equation [4]}$$

14

15

16

17

18

19

20

Where σ_j is the standard deviation of returns for company "j," σ_m is the standard deviation of returns for the broad market (as measured, for example, by the S&P 500 Index), and $\rho_{j,m}$ is the correlation of returns in between company j and the broad market. The Beta coefficient therefore represents both relative volatility (i.e., the standard deviation) of returns, and the correlation in returns between the subject company and the overall market.

The Market Risk Premium is defined as the incremental return of the market over the risk-free rate.

1 Intuitively, higher Beta coefficients indicate that the subject company's returns have been relatively volatile, and have moved in tandem with the overall market. Consequently, if a 2 company has a Beta coefficient of 1.00, it is as risky as the market and does not provide 3 any diversification benefit. 4 5 What assumptions regarding the risk-free rate did you include in your CAPM 6 Q. 7 analysis? Since utility assets represent long-term investments, I used two different estimates of the 8 A. risk-free rate: (1) the current 30-day average yield on 30-year Treasury bonds (i.e., 2.68) 9 percent); and (2) the near-term projected 30-year Treasury yield (i.e., 3.35 percent). ³⁷ 10 11 Q. Why have you relied upon the 30-year Treasury yield for your CAPM analysis? 12 13 A. In determining the security most relevant to the application of the CAPM, it is important to select the term (or maturity) that best matches the life of the underlying investment. 14 15 Electric utilities typically are long-duration investments and as such, the 30-year Treasury yield is more suitable for the purpose of calculating the Cost of Equity. 16 17 0. Please describe your ex-ante approach to estimating the Market Risk Premium. 18 The ex-ante Market Risk Premium reflects the expected market required return, less the 19 A. 20 current 30-year Treasury yield. To estimate the expected market return, I calculated the average ROE based on the Constant Growth DCF model. To do so, I relied on data from 21 37 See, Blue Chip Financial Forecasts, Vol. 35, No. 2, February 1, 2016, at 2. Consensus projections of the

30-year Treasury yield for the six quarters ending June 2017.

two sources: (1) Bloomberg, and (2) Value Line. For both sources, I calculated the average expected dividend yield (using the same one-half growth rate assumption described earlier) and combined that amount with the average projected earnings growth rate to arrive at the average DCF result. I then subtracted the current 30-year Treasury yield from that amount to arrive at the market DCF-derived *ex-ante* Market Risk Premium estimate. The results of those two calculations are provided in Schedule RBH-6.

Q. What Beta coefficients did you use in your CAPM analysis?

A. My approach includes the average reported Beta coefficient from Bloomberg and Value Line for each of the proxy companies. While both of those services adjust their calculated (or raw) Beta coefficients to reflect the tendency of the Beta coefficient to regress to the market mean of 1.00, Value Line calculates the Beta coefficient over a five-year period, while Bloomberg's calculation is based on two years of data (*see*, Schedule RBH-7).

Q. What are the results of your CAPM analysis?

18 A. The results of my CAPM analysis are summarized in Table 8, below (*see* also Schedule RBH-8).

Table 8: Summary of CAPM Results

	Bloomberg Derived Market Risk Premium	Value Line Derived Market Risk Premium	
Average Bloomberg Beta Coefficient			
Current 30-Year Treasury (2.68%)	9.02%	8.46%	
Near Term Projected 30-Year Treasury (3.35%)	9.69%	9.13%	
Average Value Line Beta Coefficient			
Current 30-Year Treasury (2.68%)	10.95%	10.22%	
Near Term Projected 30-Year Treasury (3.35%)	11.62%	10.89%	

A.

Bond Yield Plus Risk Premium Approach

4 Q. Please generally describe the Bond Yield Plus Risk Premium approach.

This approach is based on the basic financial tenet that equity investors bear the residual risk associated with ownership and therefore require a premium over the return they would have earned as a bondholder. That is, since returns to equity holders are more risky than returns to bondholders, equity investors must be compensated for bearing that risk. Risk premium approaches, therefore, estimate the Cost of Equity as the sum of the equity risk premium and the yield on a particular class of bonds. The equity risk premium typically is estimated using a variety of approaches, some of which incorporate *ex-ante*, or forward-looking estimates of the Cost of Equity, and others that consider historical, or *ex-post*, estimates. An alternative approach is to use actual authorized returns for electric utilities to estimate the Equity Risk Premium.

1 Q. Please explain how you performed your Bond Yield Plus Risk Premium analysis.

2 Α. As suggested above, I first defined the Risk Premium as the difference between authorized ROEs and the then-prevailing level of long-term (i.e., 30-year) Treasury yield. 3 I then gathered data from 1,469 electric utility rate proceedings between January 1, 1980 4 5 and February 29, 2016. In addition to the authorized ROE, I also calculated the average 6 period between the filing of the case and the date of the final order (the lag period). In 7 order to reflect the prevailing level of interest rates during the pendency of the proceedings, I calculated the average 30-year Treasury yield over the average lag period 8 (approximately 200 days). 9

10

11

12

13

14

15

Because the data covers a number of economic cycles,³⁸ the analysis also may be used to assess the stability of the Equity Risk Premium. As noted above, the Equity Risk Premium is not constant over time; prior research has shown that it is directly related to expected market volatility, and inversely related to the level of interest rates.³⁹ That finding is particularly relevant given the historically low level of current Treasury yields.

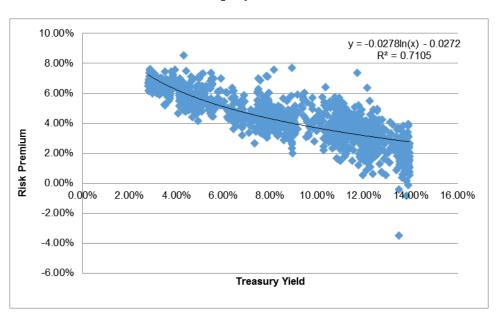
16

17

Q. How did you model the relationship between interest rates and the Equity Risk Premium?

18 **Premium?**

19 A. The basic method used was regression analysis, in which the observed Equity Risk


-

See, National Bureau of Economic Research, U.S. Business Cycle Expansion and Contractions.
 See, e.g., Robert S. Harris and Felicia C. Marston, Estimating Shareholder Risk Premia Using Analysts' Growth Forecasts, Financial Management, Summer 1992, at 63-70; Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson, The Risk Premium Approach to Measuring a Utility's Cost of Equity, Financial Management, Spring 1985, at 33-45; and Farris M. Maddox, Donna T. Pippert, and Rodney N. Sullivan, An Empirical Study of Ex Ante Risk Premiums for the Electric Utility Industry, Financial Management, Autumn 1995, at 89-95.

Premium is the dependent variable, and the average 30-year Treasury yield is the independent variable. Relative to the long-term historical average, the analytical period includes interest rates and authorized ROEs that are quite high during one period (*i.e.*, the 1980s) and that are quite low during another (*i.e.*, the post-Lehman bankruptcy period). To account for that variability, I used the semi-log regression, in which the Equity Risk Premium is expressed as a function of the natural log of the 30-year Treasury yield:

$$RP = \alpha + \beta(LN(T_{30}))$$
 Equation [5]

As shown on Chart 2 (below), the semi-log form is useful when measuring an absolute change in the dependent variable (in this case, the Risk Premium) relative to a proportional change in the independent variable (the 30-year Treasury yield).

Chart 2: Equity Risk Premium

As Chart 2 illustrates, over time there has been a statistically significant, negative relationship between the 30-year Treasury yield and the Equity Risk Premium.

Consequently, simply applying the long-term average Equity Risk Premium of 4.50 1 percent would significantly understate the Cost of Equity and produce results well below 2 any reasonable estimate. Based on the regression coefficients in Chart 2, however, the 3 implied ROE is between 10.04 percent and 10.47 percent (see, Schedule RBH-9). 4 5 VII. **BUSINESS RISKS AND OTHER CONSIDERATIONS** 6 7 Q. What additional information did you consider in assessing the analytical results noted above? 8 Because the analytical methods discussed above provide a range of estimates, there are 9 A. several additional factors that should be taken into consideration when establishing a 10 reasonable range for the Company's Cost of Equity. Those factors include the 11 Company's comparatively small size and the costs associated with the flotation of 12 13 common stock. 14 15 **Small Size Premium** Please explain the risk associated with small size. 16 Q. Both the financial and academic communities have long accepted the proposition that the 17 A. Cost of Equity for small firms is subject to a "size effect". 40 Although empirical evidence 18 of the size effect often is based on studies of industries beyond regulated utilities, utility 19 20 analysts also have noted the risks with associated small market capitalizations. Specifically, Ibbotson Associates noted: 21

See, Mario Levis, *The record on small companies: A review of the evidence*, <u>Journal of Asset Management 2</u>, March 2002, at 368-397, for a review of literature relating to the size effect.

For small utilities, investors face additional obstacles, such as smaller customer base, limited financial resources, and a lack of diversification across customers, energy sources, and geography. These obstacles imply a higher investor return.

Small size, therefore, leads to two categories of increased risk for investors: (1) light

Small size, therefore, leads to two categories of increased risk for investors: (1) liquidity risk (*i.e.*, the risk of not being able to sell one's shares in a timely manner due to the relatively thin market for the securities); and (2) fundamental business risks.

8

9

10

11

12

13

14

15

16

A.

6

7

Q. How does Unitil Energy compare in size to the proxy companies?

Unitil Energy is significantly smaller than the average for the proxy group companies, both in terms of number of customers and market capitalization. Because Unitil Energy is not a separately traded entity, an estimated stand-alone market capitalization for Unitil Energy must be calculated. To do so, I applied the median market to book ratio for the 22-member proxy group to Unitil Energy's implied equity of \$78 million. The implied market capitalization based on that calculation is \$130 million, which is less than 2.00 percent of the median level of the proxy group.

17

18

19

20

21

22

Q. How did you evaluate the risks associated with the Company's relatively small size?

A. In its 2015 Ibbotson SBBI Market Report, Morningstar Inc. ("Morningstar") calculates the size premium for deciles of market capitalizations relative to the S&P 500 Index. As shown on Schedule RBH-11, based on recent market data, the average market capitalization of the proxy group is approximately \$9.26 billion, and the median market

_

Michael Annin, Equity and the Small-Stock Effect, Public Utilities Fortnightly, October 15, 1995.

Stockholder equity was calculated by applying the proposed equity ratio of 50.97% to the proforma rate base for Unitil of \$153 million (*see*, Schedule RevReq-4).

capitalization of the proxy group is \$7.47 billion, which correspond to the third decile of Morningstar's market capitalization data. Using the median market capitalization in the Morningstar analysis, the proxy group has a size premium of 0.94 percent. The implied market capitalization for Unitil Energy is approximately \$130 million, which falls within the 10th decile and corresponds to a size premium of 5.72 percent (or 572 basis points). The difference between those size premiums is 478 basis points (5.72 percent – 0.94 percent). However, rather than propose a specific adjustment, I considered the effect of small size in determining where the Company's ROE falls within the range of results.

Flotation Costs

Q. What are flotation costs?

costs of issuance.

12 A. Flotation costs are the costs associated with the sale of new issues of common stock.

These include out-of-pocket expenditures for preparation, filing, underwriting, and other

A.

Q. Why is it important to recognize flotation costs in the allowed ROE?

In order to attract and retain new investors, a regulated utility must have the opportunity to earn a return that is both competitive and compensatory. To the extent that a company is denied the opportunity to recover prudently incurred flotation costs, actual returns will fall short of expected (or required) returns, thereby diminishing its ability to attract adequate capital on reasonable terms.

1	Q.	Are flotation costs part of the utility's invested costs or part of the utility's
2		expenses?
3	A.	Flotation costs are part of capital costs, which are properly reflected on the balance sheet
4		under "paid in capital" rather than current expenses on the income statement. Flotation
5		costs are incurred over time, just as investments in rate base or debt issuance costs. As a
6		result, the great majority of flotation costs is incurred prior to the test year, but remains
7		part of the cost structure during the test year and beyond.
8		
9	Q.	Do the DCF and CAPM models already incorporate investor expectations of a
10		return in order to compensate for flotation costs?
11	A.	No. The models used to estimate the appropriate ROE assume no "friction" or
12		transaction costs, as these costs are not reflected in the market price (in the case of the
13		DCF model) or risk premium (in the case of the CAPM and the Bond Yield Plus Risk
14		Premium model). Therefore, it is appropriate to consider flotation costs when
15		determining where within the range of reasonable results Unitil Energy's return should
16		fall.
17		
18	Q.	Is the need to consider flotation costs recognized by the academic and financial
19		communities?
20	A.	Yes. The need to reimburse investors for equity issuance costs is recognized by the
21		academic and financial communities in the same spirit that investors are reimbursed for
22		the costs of issuing debt. This treatment is consistent with the philosophy of a fair rate of
23		return. As explained by Dr. Shannon Pratt:

Flotation costs occur when a company issues new stock. The business 1 usually incurs several kinds of flotation or transaction costs, which reduce 2 the actual proceeds received by the business. Some of these are direct out-3 of-pocket outlays, such as fees paid to underwriters, legal expenses, and 4 prospectus preparation costs. Because of this reduction in proceeds, the 5 6 business's required returns must be greater to compensate for the additional costs. Flotation costs can be accounted for either by amortizing 7 the cost, thus reducing the net cash flow to discount, or by incorporating 8 the cost into the cost of equity capital. Since flotation costs typically are 9 not applied to operating cash flow, they must be incorporated into the cost 10 of equity capital.⁴³ 11

12

13

Q. How did you calculate the flotation cost recovery adjustment?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs. My flotation cost adjustment recognizes the costs of issuing equity that were incurred by the Company and the proxy group companies in their most recent two issuances. As shown in Schedule RBH-12, an adjustment of 0.13 percent (*i.e.*, 13 basis points) reasonably represents flotation costs for the Company.

19

- Q. Are you proposing to adjust your recommended ROE by 13 basis points to reflect the effect of flotation costs on Unitil Energy's ROE?
- A. No, I am not. Rather, I have considered the effect of flotation costs, in addition to the
 Company's other business risks, in determining where the Company's ROE falls within
 the range of results.

Shannon P. Pratt, Roger J. Grabowski, Cost of Capital: Applications and Examples, 4th ed. (John Wiley & Sons, Inc., 2010), page 586.

VIII. CAPITAL MARKET ENVIRONMENT

1

11

12

13

14

15

16

17

18

19

20

21

A.

- Q. Do economic conditions influence the required cost of capital and required returnon common equity?
- A. Yes. As discussed in Section VI, the models used to estimate the Cost of Equity are
 meant to reflect, and therefore are influenced by, current and expected capital market
 conditions. Therefore, it is important to assess the reasonableness of any financial
 model's results in the context of observable market data. To the extent that certain ROE
 estimates are incompatible with such data or inconsistent with basic financial principles,
 it is appropriate to consider whether alternative estimation techniques are likely to
 provide more meaningful and reliable results.

Q. Do you have any general observations regarding the relationship between current capital market conditions and the Company's Cost of Equity?

Yes, I do. Much has been reported about the Federal Reserve's market intervention since 2007, and its effect on interest rates. Although the Federal Reserve completed its Quantitative Easing initiative in October 2014, it was not until December 2015 that it raised the Federal Funds rate, and began the process of rate normalization. A significant issue, then, is how investors will react as that process continues, and eventually is completed. A viable outcome is that investors will perceive greater chances for economic growth, which will increase the growth rates included in the Constant Growth DCF model. At the same time, higher growth and the absence of Federal market

See Federal Reserve Press Release (December 16, 2015).

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 48 of 60

1 intervention could provide the opportunity for interest rates to increase, thereby increasing the dividend yield portion of the DCF model. In that case, both terms of the 2 Constant Growth DCF model would increase, producing higher ROE estimates. 3

4

5

6

7

8

9

10

At this time, however, market data remains somewhat disjointed. As a consequence, it is difficult to rely on a single model to estimate the Company's Cost of Equity. A more reasoned approach is to understand the relationships among Federal Reserve policies, interest rates and risk, and assess how those factors may affect different models and their results. For the reasons discussed below, the current market is one in which it is very important to consider a broad range of data and models when determining the Cost of Equity.

12

13

14

11

Please summarize the effect of recent Federal Reserve policies on interest rates and Q. the cost of capital.

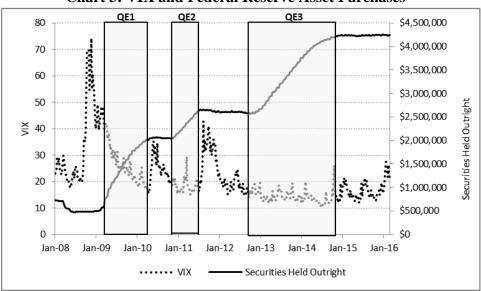
Beginning in 2008, the Federal Reserve proceeded on a steady path of initiatives intended 15 A. to lower long-term Treasury yields. 45 The Federal Reserve policy actions "were designed 16 to put downward pressure on longer-term interest rates by having the Federal Reserve 17 take onto its balance sheet some of the duration and prepayment risks that would 18 otherwise have been borne by private investors."46 Under that policy, "Securities held 19 outright" on the Federal Reserve's balance sheet increased from approximately \$489 20

See Federal Reserve Press Release (June 19, 2013).

Federal Reserve Bank of New York, Domestic Open Market Operations During 2012, April 2013, at 29.

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 49 of 60

billion at the beginning of October 2008 to \$4.25 trillion by the end of February 2016.⁴⁷ To put that increase in context, the securities held by the Federal Reserve represented approximately 3.29 percent of GDP at the end of September 2008, and had risen to approximately 23.42 percent of GDP in February 2016.⁴⁸ As such, the Federal Reserve policy actions have represented a significant source of liquidity, and have had a substantial effect on capital markets.


Just as market intervention by the Federal Reserve has reduced interest rates, it also has had the effect of reducing market volatility. As shown in Chart 3 (below), each time the Federal Reserve began to purchase bonds (as evidenced by the increase in "Securities Held Outright" on its balance sheet), volatility subsequently declined. In fact, in September 2012, when the Federal Reserve began to purchase long-term securities at a pace of \$85 billion per month, volatility (as measured by the CBOE Volatility Index, known as the "VIX") fell, and through October 2014 remained in a relatively narrow range. The reason is quite straight-forward: Investors became confident that the Federal Reserve would intervene if markets were to become unstable.

-

Source: Federal Reserve Board Schedule H.4.1. "Securities held outright" include U.S. Treasury securities, Federal agency debt securities, and mortgage-backed securities.

Source: Federal Reserve Board Schedule H.4.1; Bureau of Economic Analysis.

Chart 3: VIX and Federal Reserve Asset Purchases⁴⁹

2

4

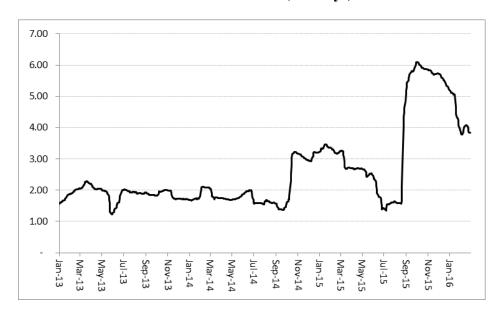
5

6

7

8

9


1

A further measure of market uncertainty is the volatility of the VIX as measured by its standard deviation. As Chart 3 (below) notes, that volatility moved in a relatively narrow range during 2013, but since then, it has noticeably increased. Such volatility indicates that, although interest rates are still near historical lows, there remains significant, if not greater, uncertainty in today's equity markets, with investors requiring greater returns to bear that risk.

-

Source: Federal Reserve Economic Data (FRED), Federal Reserve Bank of St. Louis; Federal Reserve Statistical Release H.4.1, Factors Affecting Reserve Balances.

Chart 4: Standard Deviation (100 days) of VIX⁵⁰

Those findings are consistent with the VVIX, which is a traded index of the expected volatility of the VIX. Over the long-term, the VVIX has averaged approximately 87.00; its 2013 average was somewhat below that level (80.64). In 2015, the VVIX increased to (on average) 94.82, and to date in 2016, has averaged 100.04; the 2015-2016 average has been 95.52. Just as the backward-looking standard deviation of the VIX indicates that observed volatility increased considerably in 2015 and 2016, the VVIX indicates that expected volatility also has been well above the 2013 levels. ⁵¹

The important analytical issue is whether we can infer that risk aversion among investors is at a historically low level, implying a Cost of Equity that is well below recently authorized returns. Given the negative correlation between the expansion of the Federal Reserve's balance sheet and the VIX, it is difficult to conclude that fundamental risk

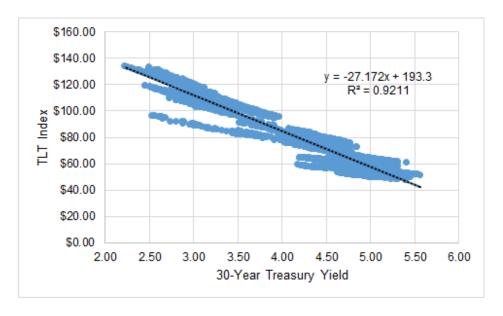
Source: Bloomberg Professional.

Source: Bloomberg Professional.

1 aversion and investor return requirements have fallen. If it were the case that investors believe that volatility will remain at low levels (that is, that market risk and uncertainty 2 will remain low), it is not clear why they would decrease their return requirements for 3 defensive sectors such as utilities. In that respect, it appears that the Constant Growth 4 DCF results are at odds with market conditions. 5 6 7 Q. Has the Federal Reserve's quantitative easing policy been associated with changes in the proxy companies' trading levels? 8 Yes, that appears to be the case. From January 2000 through the end of August 2012 9 A. (that is, immediately prior to the third round of Quantitative Easing), the proxy group's 10 average P/E ratio traded at a 14.00 percent discount to the market. From September 2012 11 through May 2013, when the Federal Reserve announced it would begin to taper its asset 12 13 purchases, the proxy group traded at a 19.00 percent premium to the market. In fact, 14 between September 2012 and February 29, 2016, the proxy group P/E ratio traded at a 9.00 percent premium to the market. 15 16 More recently while the proxy group P/E ratio declined somewhat in the latter part of 17 2015, it began increasing again in 2016. Since the beginning of 2016, the proxy group 18 has traded at a 7.00 percent premium to the market. 19 20 21 Does your recommendation also consider the current interest rate environment? Q. 22 23 A. Yes, it does. From an analytical perspective, it is important that the inputs and

NHPUC Docket No. DE 16-384 Testimony of Robert B. Hevert Exhibit RBH-1 Page 53 of 60

assumptions used to arrive at an ROE recommendation, including assessments of capital market conditions, are consistent with the recommendation itself. Although I appreciate that all analyses require an element of judgment, the application of that judgment must be made in the context of the quantitative and qualitative information available to the analyst and the capital market environment in which the analyses were undertaken. Because the Cost of Equity is forward-looking, the salient issue is whether investors see the likelihood of increased interest rates during the period in which the rates set in this proceeding will


be in effect.

As to long-term interest rates, the approximately 50 economists surveyed by Blue Chip Financial Forecast see the 30-year Treasury yield as increasing to 4.00 percent by 2017. ⁵² In addition to consensus economists' forecasts, we can look to the TLT, an exchange-traded fund of long-term U.S. Government bonds to assess investors' views of the likelihood of increased interest rates in the future. Because the price of bonds is inversely related to interest rates, the TLT has increased in value as interest rates have fallen over time (*see* Chart 5, below).

-

See, Blue Chip Financial Forecast, Vol. 34 No. 12, December 1, 2015, at 14.

Chart 5: TLT Index vs. 30-Year Treasury Yield⁵³

A market-based way of understanding whether investors believe interest rates will increase or decrease is to review the premium they are willing to pay for the option to buy or sell the TLT, at the current market price, in the future. If investors are willing to pay more for the option to sell the TLT in the future at today's price than they are willing to pay for the option to buy the TLT (also at today's price), those relative values indicate that on balance, the market sees a greater prospect of increases in interest rates than decreases. Based on data from NASDAQ, we see that as of April 2016, the option to sell the TLT in January 2018 (the furthest priced option) at the current price is approximately twice the value of the option to buy the TLT.⁵⁴ Since bond prices fall as interest rates increase, investors see a greater likelihood of increases in long-term interest rates, than decreases.

Source: Yahoo!Finance.

Source: http://www.nasdag.com/symbol/tlt/option-chain?dateindex=7

Given that: (1) Federal monetary policy has begun its process of "normalization"; and (2) economists and market data indicate expectations for increasing interest rates into 2018 and beyond, I believe that an ROE in the range of 10.00 percent to 10.60 percent reflects the prevailing and expected interest rate environment.

A.

Q. What conclusions do you draw from your analyses of capital market conditions?

From an analytical perspective, it is important that the inputs and assumptions used to arrive at an ROE determination, including assessments of capital market conditions, are consistent with the conclusion itself. Although I appreciate that all analyses require an element of judgment, the application of that judgment must be made in the context of the quantitative and qualitative information available to the analyst and the capital market environment in which the analyses were undertaken. Because the application of financial models and interpretation of their results often is the subject of differences among analysts in regulatory proceedings, I believe that it is important to review and consider a variety of data points; doing so enables us to put in context both quantitative analyses and the associated recommendations.

IX. CAPITAL STRUCTURE

20 Q. What is the Company's proposed capital structure?

A. The Company has proposed a capital structure comprised of 50.97 percent common equity, 48.80 percent long-term debt, 0.11 percent short-term debt, and 0.13 percent preferred equity.

Q. Is there a generally accepted approach to developing the appropriate capital structure for a regulated electric utility?

A. Yes, there are a number of generally accepted approaches to developing the appropriate capital structure. The reasonableness of the approach depends on the nature and circumstances of the subject company. In cases where the subject company does not issue its own securities, it may be reasonable to look to the parent's capital structure or to develop a "hypothetical" capital structure based on the proxy group companies or other industry data. Regardless of the approach taken, however, it is important to consider the resulting capital structure in light of industry norms and investor requirements. That is, the capital structure should enable the subject company to maintain its financial integrity, thereby enabling access to capital at competitive rates under a variety of economic and financial market conditions.

Q. How does the capital structure affect the Cost of Equity?

A. The capital structure relates to a company's financial risk, which represents the risk that a company may not have adequate cash flows to meet its financial obligations, and is a function of the percentage of debt (or financial leverage) in its capital structure. In that regard, as the percentage of debt in the capital structure increases, so do the fixed obligations for the repayment of that debt. Consequently, as the degree of financial leverage increases, the risk of financial distress (*i.e.*, financial risk) also increases. Since

the capital structure can affect the subject company's overall level of risk, 55 it is an 1 important consideration in establishing a just and reasonable rate of return. 2 3 Please discuss your analysis of the capital structures of the proxy group companies. 4 Q. I calculated the average capital structure for each of the proxy group companies over the 5 A. last eight quarters. As shown in Schedule RBH-13, the mean of the proxy group actual 6 7 capital structures is 51.54 percent common equity 48.21 percent long-term debt, and 0.25 percent preferred equity. The common equity ratios range from 36.14 percent to 66.01 8 percent. Based on that review, it is apparent that the Company's proposed capital 9 structure is generally consistent with the capital structures of the proxy group companies. 10 11 Q. What is the basis for using average capital components rather than a point-in-time 12 13 measurement? 14 A. Measuring the capital components at a particular point in time can skew the capital 15 structure by the specific circumstances of a particular period. Therefore, it is more appropriate to normalize the relative relationship between the capital components over a 16 period of time. 17 18 Q. What is your conclusion regarding an appropriate capital structure for Unitil 19 Energy? 20 21 A. Considering the average actual equity ratio of 51.54 percent for the proxy group

See, Roger A. Morin, New Regulatory Finance, Public Utility Reports, Inc., 2006, at 45-46.

companies, I believe that Unitil Energy's proposed common equity ratio of 50.97 percent is appropriate as it is consistent with the proxy group companies.

3

4 X. COST OF DEBT

- 5 Q. What cost of debt has the company requested in this proceeding?
- A. The Company has proposed a cost of debt of 7.15 percent, which is the Company's actual net cost rate, as shown in Schedule RevReq 5-4.

8

9

- Q. Please discuss your analysis of the Company's cost of debt.
- 10 A. To test the reasonableness of the Company's proposed cost of debt I reviewed the

 11 prevailing yield on Bloomberg Fair Value Curves for A-rated and BBB-rated utility debt

 12 concurrent with the date of issuance of the Company's debt instruments. As shown in

 13 Schedule RBH-14, the Company's weighted average coupon rate is consistent with the

 14 prevailing yields at the times of issuance. Based on that analysis, I conclude that the

 15 Company's proposed 7.15 percent cost of long-term debt is reasonable.

16

17

XI. CONCLUSIONS AND RECOMMENDATION

- 18 Q. What is your conclusion regarding the Company's Cost of Equity?
- I believe that a rate of return on common equity in the range of 10.00 percent to 10.60

 percent represents the range of equity investors' required rate of return for investment in

 electric utilities similar to Unitil Energy in today's capital markets. Within that range, it

 is my view that an ROE of 10.30 percent is reasonable and appropriate. A summary of

 the results of my analyses is shown in Table 9 below.

Table 9: Summary of Analytical Results

Discounted Cash Flow	Mean Low	Mean	Mean High
30-Day Constant Growth DCF	8.47%	9.13%	9.78%
90-Day Constant Growth DCF	8.60%	9.27%	9.91%
180-Day Constant Growth DCF	8.70%	9.37%	10.01%
30-Day Multi-Stage DCF	9.39%	9.86%	10.32%
90-Day Multi-Stage DCF	9.72%	10.20%	10.66%
180-Day Multi-Stage DCF	9.99%	10.46%	10.93%
Suppo	orting Methodol	logies	
CAPM Results		Bloomberg Derived Market Risk Premium	Value Line Derived Market Risk Premium
Average B	loomberg Beta C	Coefficient	l
Current 30-Year Treasury (2.68%)		9.02%	8.46%
Near Term Projected 30-Year Treasury (3.35%)		9.69%	9.13%
Average V	alue Line Beta C	Coefficient	
Current 30-Year Treasury (2.68%)		10.95%	10.22%
Near Term Projected 30-Year Treasury (3.35%)		11.62%	10.89%
	Low	Mid	High
Bond Yield Risk Premium	10.04%	10.08%	10.47%
Flotation Costs		0.1	3%

3

4

5

6

1

Based on the proposed capital structure of 50.97 percent common equity, 48.80 percent long-term debt, 0.11 percent short-term debt, and 0.13 percent preferred equity, and my recommended 10.30 percent Return on Equity, the Company's proposed overall Rate of Return is 8.75 percent (*see* Table 10, below).

Table 10: Proposed Overall Rate of Return⁵⁶

Component	Percent of Total	Cost Rate	Weighted Cost Rate
Common Equity	50.97%	10.30%	5.25%
Preferred Equity	0.13%	6.00%	0.01%
Long-Term Debt	48.80%	7.15%	3.49%
Short-Term Debt	0.11%	1.54%	0.00%
Total	100.00%		8.75%

2

1

Q. Does this conclude your testimony?

4 A. Yes, it does.

See, Schedule RevReq-5.